Solving Trigonometric Equation Review

Introduction to Solving Basic Trigonometric Equations

(You may need to review the unit circle and finding trig values first, since this is similar to finding trig values, but backwards)

Using "Unit Circle Wrap" idea;

Special Number Inputs

Solve: $\sin(t) = \frac{\sqrt{2}}{2}$
This is saying, find the real number (arc length or corresponding angle, in radians) whose corresponding point on the unit circle has Y value of $\frac{\sqrt{2}}{2}$
Why Y value?
How many terminal sides are there corresponding to this
How many values of t? (or think in angles)
How do we express infinitely many answers?
Sometimes we are asked to solve for t on a restricted domain:
Solve: $sin(t) = \frac{\sqrt{2}}{2}$ for $0 < t < \frac{\pi}{2}$
Solve: $sin(t) = \frac{\sqrt{2}}{2}$ for $0 < t < 2\pi$
Solve: $sin(t) = \frac{\sqrt{2}}{2}$ for $-2\pi < t < 0$
Solve: $sin(t) = \frac{\sqrt{2}}{2}$ for $0 < t < 4\pi$

Examples: While you are learning the process, I highly encourage you to draw the unit circle and find the location of the terminal sides corresponding to the solution.

Solve: $\cos t = -\frac{1}{2}$
This is asking us to find the real number (arc length or corresponding angle, in radians) whose corresponding point on the unit circle
has value of $\frac{1}{2}$
Solutions:
Solve: $\cos t = -\frac{1}{2}$ for $0 < t < \pi$
Solve: $\cos t = 1$
This is asking us to find the real number (arc length or corresponding angle, in radians) whose corresponding point on the unit circle hasvalue of 1
Solutions:
Solve: $\cos t = 1 \cos(t) = 1$ for $0 \le t < 2\pi$
Solve: $sin(t) = 0$
This is asking us to find the real number (arc length or corresponding angle, in radians) whose corresponding point on the unit circle hasvalue of 0
Solutions:
Solve: $sin(t) = 0$ for $0 < t < \pi$
Solve: $\sin(t) = \frac{-\sqrt{3}}{2}$
This is asking us to find the real number (arc length or corresponding angle, in radians) whose corresponding point on the unit circle
hasvalue of $\frac{-\sqrt{3}}{2}$
Solutions:
Solve: $\sin(t) = -\sqrt{3}/2$ for $-\frac{\pi}{2} < t < \frac{\pi}{2}$

Using a graph to visualize solutions to a trig equation.

More Solving Basic Trigonometric Equations :

Solve:	$\tan(t) = 1$
--------	---------------

This is saying, find the real number (arc length or corresponding angle, in radians) whose corresponding point on the unit circle has y/x value of 1. Note: Unless you know the tangent values of the key angles directly, this can be challenging.		
How many terminal sides are there corresponding to this		
How many values of t? (or think in angles)		
How do we express infinitely many answers?		
Note: we can write this in a more compact way:		
Sometimes we are asked to solve for t on a restricted domain:		
Solve: $\tan(t) = 1$ for $0 < t < 2\pi$		

Solve: $\tan(t) = 1$ for $-\frac{\pi}{2} < t < \frac{\pi}{2}$

Example: Find all solutions:

$$\tan(t) = \sqrt{3} \qquad \qquad \cot(t) = -\sqrt{3} \qquad \qquad \sec(t) = -2$$

Solving Trig equations requiring isolating the trig funtion

First isolate the trig function first, then solve for the argument

1) Solve: $2\cos(\theta) - 1 = 0; \quad 0 \le \theta < 2\pi$

2) Solve $\tan^2(t) - 1 = 0$

Solving Trig equations when there is an expression in the argument instead of just a variable.

First solve for the argument as a whole, then the variable.

3) Solve: sin(x-3) - 1 = 0

4) Solve
$$\tan\left(\frac{x}{4}\right) = \frac{\sqrt{3}}{3}$$

5) Solve
$$\cos(3\theta) + 1 = 0; \quad 0 \le \theta < 2\pi$$

Solving Trig equations using factoring and the zero product law.

(1) Solve: $2\cos^2(\theta) - \cos(\theta) - 1 = 0$ can use substitution

(2) Solve for $0 \le x < 2\pi$; $\sqrt{3}\sin(x)\tan(x) = \sin(x)$

Note: _____

Solving Trig equations using identities

(1) $\cos^2(\theta) - \sin^2(\theta) + \sin(\theta) = 0$

(2) $\cos(2\theta) + 6\sin^2(\theta) = 4$

(3) Solve for $0 \le x < 2\pi$; $\sin(x)\cos(x) = \frac{1}{4}$