Solving Trigonometric Equation Review

Introduction to Solving Basic Trigonometric Equations
(You may need to review the unit circle and finding trig values first, since this is similar to finding trig values, but backwards)

Using "Unit Circle Wrap" idea;

Special Number Inputs

Solve: $\sin (t)=\frac{\sqrt{2}}{2}$
This is saying, find the real number (arc length or corresponding angle, in radians) whose corresponding point on the unit circle has Y value of $\frac{\sqrt{2}}{2}$ Why Y value? \qquad
How many terminal sides are there corresponding to this \qquad
How many values of t ? (or think in angles) \qquad
How do we express infinitely many answers? \qquad
Sometimes we are asked to solve for t on a restricted domain:
Solve: $\sin (t)=\frac{\sqrt{2}}{2}$ for $0<t<\frac{\pi}{2}$ \qquad
Solve: $\sin (t)=\frac{\sqrt{2}}{2}$ for $0<t<2 \pi$ \qquad
Solve: $\sin (t)=\frac{\sqrt{2}}{2}$ for $-2 \pi<t<0$ \qquad
Solve: $\sin (t)=\frac{\sqrt{2}}{2}$ for $0<t<4 \pi$ \qquad
Examples: While you are learning the process, I highly encourage you to draw the unit circle and find the location of the terminal sides corresponding to the solution.

Solve: $\cos t=-\frac{1}{2}$
This is asking us to find the real number (arc length or corresponding angle, in radians) whose corresponding point on the unit circle has \qquad value of $\frac{-1}{2}$

Solutions: \qquad
Solve: $\cos t=-\frac{1}{2}$ for $0<t<\pi$ \qquad

Solve: $\cos t=1$

This is asking us to find the real number (arc length or corresponding angle, in radians) whose corresponding point on the unit circle has value of 1

Solutions: \qquad
Solve: $\cos t=1 \cos (t)=1$ for $0 \leq t<2 \pi$
Solve: $\sin (t)=0$
This is asking us to find the real number (arc length or corresponding angle, in radians) whose corresponding point on the unit circle has value of 0

Solutions: \qquad
Solve: $\sin (t)=0$ for $0<t<\pi$
Solve: $\sin (t)=\frac{-\sqrt{3}}{2}$
This is asking us to find the real number (arc length or corresponding angle, in radians) whose corresponding point on the unit circle
has___ value of $\frac{-\sqrt{3}}{2}$
Solutions: \qquad
Solve: $\sin (t)=-\sqrt{3} / 2$ for $-\frac{\pi}{2}<t<\frac{\pi}{2}$ \qquad

Using a graph to visualize solutions to a trig equation.

Solve: $\sin (t)=-\sqrt{3} / 2$
Solve: $\sin (t)=-\sqrt{3} / 2$ for $0<t<\pi$
Solve: $\sin (t)=-\sqrt{3} / 2$ for $0<t<2 \pi$
Solve: $\sin (t)=-\sqrt{3} / 2$ for $-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$ \qquad

More Solving Basic Trigonometric Equations:

Solve: $\tan (t)=1$
This is saying, find the real number (arc length or corresponding angle, in radians) whose corresponding point on the unit circle has y / x value of 1 . Note: Unless you know the tangent values of the key angles directly, this can be challenging.

How many terminal sides are there corresponding to this \qquad
How many values of t ? (or think in angles) \qquad
How do we express infinitely many answers? \qquad

Note: we can write this in a more compact way: \qquad

Sometimes we are asked to solve for t on a restricted domain:
Solve: $\tan (t)=1$ for $0<t<2 \pi$ \qquad
Solve: $\tan (t)=1$ for $-\frac{\pi}{2}<t<\frac{\pi}{2}$

Example: Find all solutions:

$$
\tan (t)=\sqrt{3} \quad \cot (t)=-\sqrt{3} \quad \sec (t)=-2
$$

Solving Trig equations requiring isolating the trig funtion

First isolate the trig function first, then solve for the argument

1) Solve: $2 \cos (\theta)-1=0 ; \quad 0 \leq \theta<2 \pi$
2) Solve $\tan ^{2}(t)-1=0$

Solving Trig equations when there is an expression in the argument instead of just a variable.
First solve for the argument as a whole, then the variable.
3) Solve: $\sin (x-3)-1=0$
4) Solve $\tan \left(\frac{x}{4}\right)=\frac{\sqrt{3}}{3}$
5) Solve $\cos (3 \theta)+1=0 ; \quad 0 \leq \theta<2 \pi \quad{ }^{* * * * * * *}$

Visual explanation

Solving Trig equations using factoring and the zero product law.
(1) Solve: $2 \cos ^{2}(\theta)-\cos (\theta)-1=0$
can use substitution
(2) Solve for $0 \leq x<2 \pi$; $\sqrt{3} \sin (x) \tan (x)=\sin (x) \quad$ Note:

Solving Trig equations using identities
(1) $\cos ^{2}(\theta)-\sin ^{2}(\theta)+\sin (\theta)=0$
(2) $\cos (2 \theta)+6 \sin ^{2}(\theta)=4$
(3) Solve for $0 \leq x<2 \pi ; \quad \sin (x) \cos (x)=\frac{1}{4}$

